Neurobehavior in low-risk very preterm infants with low medical risk and full-term infants

  • Pascal A, Govaert P, Oostra A, Naulaers G, Ortibus E, Van den Broeck C. Neurodevelopmental outcome in very preterm and very-low-birthweight infants born over the past decade: a meta-analytic review. Dev Med Child Neurol. 2018;60:342–55.

    Article 

    Google Scholar
     

  • Dean B, Ginnell L, Boardman JP, Fletcher-Watson S. Social cognition following preterm birth: a systematic review. Neurosci Biobehav Rev. 2021;124:151–67.

    Article 

    Google Scholar
     

  • Pascoe L, Burnett AC, Anderson PJ. Cognitive and academic outcomes of children born extremely preterm. Semin Perinatol. 2021;45:151480.

    Article 

    Google Scholar
     

  • McGowan EC, Hofheimer JA, O’Shea TM, Carter BS, Helderman J, Neal CR, et al. Sociodemographic and medical influences on neurobehavioral patterns in preterm infants: a multi-center study. Early Hum Dev. 2020;142:104954.

    CAS 
    Article 

    Google Scholar
     

  • Brouwer MJ, Kersbergen KJ, van Kooij BJM, Benders M, van Haastert IC, Koopman-Esseboom C, et al. Preterm brain injury on term-equivalent age MRI in relation to perinatal factors and neurodevelopmental outcome at two years. PLoS ONE. 2017;12:e0177128.

    Article 

    Google Scholar
     

  • Woythaler M. Neurodevelopmental outcomes of the late preterm infant. Semin Fetal Neonatal Med. 2019;24:54–9.

    Article 

    Google Scholar
     

  • Ballantyne M, Benzies KM, McDonald S, Magill-Evans J, Tough S. Risk of developmental delay: comparison of late preterm and full term Canadian infants at age 12 months. Early Hum Dev. 2016;101:27–32.

    Article 

    Google Scholar
     

  • Cheong JL, Doyle LW, Burnett AC, Lee KJ, Walsh JM, Potter CR, et al. Association Between Moderate and Late Preterm Birth and Neurodevelopment and Social-Emotional Development at Age 2 Years. JAMA Pediatr. 2017;171:e164805.

    Article 

    Google Scholar
     

  • Romeo DM, Ricci M, Picilli M, Foti B, Cordaro G, Mercuri E. Early Neurological Assessment and Long-Term Neuromotor Outcomes in Late Preterm Infants: a critical review. Medicina (Kaunas). 2020;56:475.

    Article 

    Google Scholar
     

  • Yaari M, Mankuta D, Harel-Gadassi A, Friedlander E, Bar-Oz B, Eventov-Friedman S, et al. Early developmental trajectories of preterm infants. Res Dev Disabil. 2018;81:12–23.

    Article 

    Google Scholar
     

  • Murray AL, Scratch SE, Thompson DK, Inder TE, Doyle LW, Anderson JF, et al. Neonatal brain pathology predicts adverse attention and processing speed outcomes in very preterm and/or very low birth weight children. Neuropsychology 2014;28:552–62.

    Article 

    Google Scholar
     

  • Campbell S, Osten ET, Kolobe THA, Fisher AG. Developent of the Test of Infant Motor Performance. Phys Med Rehabilitation Clin North Am. 1993;4:541–50.

    Article 

    Google Scholar
     

  • Daily DK, Ellison PH. The premie-neuro: a clinical neurologic examination of premature infants. Neonatal Netw. 2005;24:15–22.

    Article 

    Google Scholar
     

  • Dubowitz L, Ricciw D, Mercuri E. The Dubowitz neurological examination of the full-term newborn. Ment Retard Dev Disabil Res Rev. 2005;11:52–60.

    Article 

    Google Scholar
     

  • Lester BM, & Tronick, E. NICU Network Neurobehavioral Scale (NNNS). Baltimore: Paul H. Brookes Pub. Co.; 2004.

  • Washington K. The Bayley Scales of Infant Development-II and children with developmental delays: a clinical perspective. J Dev Behav Pediatr. 1998;19:346–9.

    CAS 
    Article 

    Google Scholar
     

  • Chin EYJ, Baral VR, Ereno IL, Allen JC, Low K, Yeo CL. Evaluation of neurological behaviour in late-preterm newborn infants using the Hammersmith Neonatal Neurological Examination. J Paediatr Child Health. 2019;55:349–57.

    Article 

    Google Scholar
     

  • de Souza Perrella VV, Marina Carvalho de Moraes B, Sanudo A, Guinsburg R. Neurobehavior of preterm infants from 32 to 48 weeks post-menstrual age. J Perinatol. 2019;39:800–7.

    Article 

    Google Scholar
     

  • Pineda RG, Tjoeng TH, Vavasseur C, Kidokoro H, Neil JJ, Inder T. Patterns of altered neurobehavior in preterm infants within the neonatal intensive care unit. J Pediatrics. 2013;162:470–6.e1.

    Article 

    Google Scholar
     

  • Madlinger-Lewis L, Reynolds L, Zarem C, Crapnell T, Inder T, Pineda R. The effects of alternative positioning on preterm infants in the neonatal intensive care unit: a randomized clinical trial. Res Dev Disabil. 2014;35:490–7.

    Article 

    Google Scholar
     

  • Pineda R, Durant P, Mathur A, Inder T, Wallendorf M, Schlaggar BL. Auditory Exposure in the Neonatal Intensive Care Unit: Room Type and Other Predictors. J Pediatr. 2017;183:56–66.e3.

    Article 

    Google Scholar
     

  • Pineda R, Heiny E, Nellis P, Smith J, McGrath JM, Collins M, et al. The Baby Bridge program: A sustainable program that can improve therapy service delivery for preterm infants following NICU discharge. PLoS ONE. 2020;15:e0233411.

    CAS 
    Article 

    Google Scholar
     

  • Pineda R, Smith J, Roussin J, Wallendorf M, Kellner P, Colditz G. Randomized clinical trial investigating the effect of consistent, developmentally-appropriate, and evidence-based multisensory exposures in the NICU. J Perinatol. 2021;41:2449–62.

    Article 

    Google Scholar
     

  • Pineda R, Wallendorf M, Smith J. A pilot study demonstrating the impact of the supporting and enhancing NICU sensory experiences (SENSE) program on the mother and infant. Early Hum Dev. 2020;144:105000.

    Article 

    Google Scholar
     

  • Pineda R, Bender J, Hall B, Shabosky L, Annecca A, Smith J. Parent participation in the neonatal intensive care unit: Predictors and relationships to neurobehavior and developmental outcomes. Early Hum Dev. 2018;117:32–8.

    Article 

    Google Scholar
     

  • Drougia A, Giapros V, Krallis N, Theocharis P, Nikaki A, Tzoufi M, et al. Incidence and risk factors for cerebral palsy in infants with perinatal problems: a 15-year review. Early Hum Dev. 2007;83:541–7.

    CAS 
    Article 

    Google Scholar
     

  • Hickey M, Georgieff M, Ramel S. Neurodevelopmental outcomes following necrotizing enterocolitis. Semin Fetal Neonatal Med. 2018;23:426–32.

    Article 

    Google Scholar
     

  • Gotardo JW, Volkmer NFV, Stangler GP, Dornelles AD, Bohrer BBA, Carvalho CG. Impact of peri-intraventricular haemorrhage and periventricular leukomalacia in the neurodevelopment of preterms: A systematic review and meta-analysis. PLoS ONE. 2019;14:e0223427.

    CAS 
    Article 

    Google Scholar
     

  • Ricci D, Lucibello S, Orazi L, Gallini F, Staccioli S, Serrao F, et al. Early visual and neuro-development in preterm infants with and without retinopathy. Early Hum Dev. 2020;148:105134.

    Article 

    Google Scholar
     

  • Lester BM, Tronick EZ, Brazelton TB. The Neonatal Intensive Care Unit Network Neurobehavioral Scale procedures. Pediatrics 2004;113:641–67.

    Article 

    Google Scholar
     

  • Dubowitz L, Mercuri E, Dubowitz V. An optimality score for the neurologic examination of the term newborn. J Pediatr. 1998;133:406–16.

    CAS 
    Article 

    Google Scholar
     

  • Eeles AL, Olsen JE, Walsh JM, McInnes EK, Molesworth CM, Cheong JL, et al. Reliability of Neurobehavioral Assessments from Birth to Term Equivalent Age in Preterm and Term Born Infants. Phys Occup Ther Pediatr. 2017;37:108–19.

    Article 

    Google Scholar
     

  • Spittle AJ, Walsh J, Olsen JE, McInnes E, Eeles AL, Brown NC, et al. Neurobehaviour and neurological development in the first month after birth for infants born between 32-42 weeks’ gestation. Early Hum Dev. 2016;96:7–14.

    Article 

    Google Scholar
     

  • Brown NC, Doyle LW, Bear MJ, Inder TE. Alterations in neurobehavior at term reflect differing perinatal exposures in very preterm infants. Pediatrics 2006;118:2461–71.

    Article 

    Google Scholar
     

  • Matthews LG, Walsh BH, Knutsen C, Neil JJ, Smyser CD, Rogers CE, et al. Brain growth in the NICU: critical periods of tissue-specific expansion. Pediatr Res. 2018;83:976–81.

    Article 

    Google Scholar
     

  • Hedderich DM, Bauml JG, Menegaux A, Avram M, Daamen M, Zimmer C, et al. An analysis of MRI derived cortical complexity in premature-born adults: Regional patterns, risk factors, and potential significance. Neuroimage 2020;208:116438.

    Article 

    Google Scholar
     

  • Kline JE, Illapani VSP, Li H, He L, Yuan W, Parikh NA. Diffuse white matter abnormality in very preterm infants at term reflects reduced brain network efficiency. Neuroimage Clin. 2021;31:102739.

    Article 

    Google Scholar
     

  • Brenner RG, Wheelock MD, Neil JJ, Smyser CD. Structural and functional connectivity in premature neonates. Semin Perinatol. 2021;45:151473.

    Article 

    Google Scholar
     

  • van Dokkum NH, de Kroon MLA, Reijneveld SA, Bos AF. Neonatal Stress, Health, and Development in Preterms: a systematic review. Pediatrics. 2021;148:e2021050414.

    Article 

    Google Scholar
     

  • Cheong JLY, Burnett AC, Treyvaud K, Spittle AJ. Early environment and long-term outcomes of preterm infants. J Neural Transm (Vienna). 2020;127:1–8.

    Article 

    Google Scholar
     

  • Lester BM, Tronick E. NICU Network Neurobehavioral Scale (NNNS) Manual. Baltimore:Paul H. Brookes Pub. Co.; 2004.

  • Pineda R, Liszka L, Inder T. Early neurobehavior at 30 weeks postmenstrual age is related to outcome at term equivalent age. Early Hum Dev. 2020;146:105057.

    Article 

    Google Scholar
     

  • Source link

    Leave a Reply

    Your email address will not be published.